Abstract

We have developed a method for vehicle speed measurement with high accuracy using a stereo camera. The method consists of three steps: calibration, speed estimation and refinement. This method has been successfully tested on dataset with 100 car passages.

Our Research

Subject of our research is to define high precision and stable method for speed measurement based on a stereo camera setup. The setup consists of two custom made cameras with known intrinsic parameters. The proposed method consists of three steps. In the first step we use manually measured calibration points in a scene to estimate external parameters. The estimated camera parameters are used in the second step to measure the speed of passing vehicles. Final step of our method involves refining the measured speeds using data from several car passages with known speed. The last step aims to reduce the measurement error caused by imprecise calibration.
Reference speed values of passing vehicles were obtained from a pair of experimental setups, containing a LIDAR, GPS module (high precision synchronization) and a PC. These were placed on the side of the road perpendicular to the direction of traffic flow at a defined distance between them. The sampling rate is 1 kHz and maximal measurement range is 300 m.

Our dataset consists of 100 vehicles with speeds in range from 53 to 91 km/h. Graph with our results can be found on figure 2. There are two series of data. Blue one shows the calculated speed error without any compensation. Mean absolute percentage error is 5.54 % with maximum absolute percentage error of 7.44 %. The red series shows the calculated speed error after compensation by a calibration passes. Mean absolute percentage error for this series is 0.46 % and the maximum absolute percentage error is 1.83 %.

![Figure 2: Speed measurement percentage error with respect to ground truth speed. Blue series - without refinement. Red series - with refinement.](image)

Applications

The primary focus of our method is on speed measurement. Other possible applications of stereo cameras in traffic surveillance could involve vehicle dimensions measurements, classification or counting number of cars in tunnels.

Title: Highly accurate vehicle speed measurement using stereo camera
Author: Pavel Najman (inaijman@fit.vutbr.cz)
 Adam Široký (asiswaicadam@fit.vutbr.cz)

Faculty of Information Technology
Brno University of Technology
Božetěchova 1/2
612 66 Brno, Czech Republic
Tel.: +420 54114-1144
E-Mail: info@fit.vutbr.cz

Research Project: V3C – Visual Computing Competence Center
No. TE01020415
www.v3c.cz

Project Manager: Pavel Zemčík (zemcik@fit.vutbr.cz)
Tel.: +420 603 487 824

Acknowledgment

This work was supported by the Technology Agency of the Czech Republic.